Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance
Mohamed-Chahir Fitouhi,
Mustapha Nourelfath and
Stanley B. Gershwin
Reliability Engineering and System Safety, 2017, vol. 166, issue C, 61-72
Abstract:
This paper considers a two-machine continuous flow manufacturing system with a buffer of finite capacity, and where the machines are subjected to failures, minimal repairs, and condition-based preventive maintenance. Each machine can degrade into several discrete states, which are characterized by different performance parameters, ranging from perfect functioning to complete shutdown. When a specified degraded state is exited, a preventive maintenance action is performed to restore the machine to one of the higher performance states. We evaluate the impact of preventive maintenance strategies for each machine, in order to determine their impact on production rate and total cost. A methodology is developed to analyze the complex trade-off between the contributions of preventive maintenance and of the buffer to the system performance. It is shown that preventive maintenance should be scheduled not to optimize the performance for each machine individually; its scheduling is best considered from the perspective of the manufacturing system as a whole. The analysis also reveals the importance of considering machine speeds when optimizing the choice of maintenance policy.
Keywords: Multi-state systems; Condition-based preventive maintenance; Manufacturing systems; Buffer; Performance analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017303733
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:166:y:2017:i:c:p:61-72
DOI: 10.1016/j.ress.2017.03.034
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().