Schedule risk analysis for new-product development: The GERT method extended by a characteristic function
Liangyan Tao,
Desheng Wu,
Sifeng Liu and
James H. Lambert
Reliability Engineering and System Safety, 2017, vol. 167, issue C, 464-473
Abstract:
Schedule risk analysis plays a key role in new product development. A typical project-schedule model using the Critical Path Method (CPM) and Program, Evaluation, and Review Technique (PERT) falls short in many practical situations. Instead, a graphical evaluation and review technique (GERT) has been recommended for its ability to address probability branches and loops. This paper introduces a GERT model based on a characteristic function and designs its numerical solution. First, an inversion formula is applied to derive the probability distribution of the completion time of a product development. Second, to address the implications of a due date, a novel measure of schedule risk is introduced to give a view of both loss and probability. Third, an elasticity analysis is used to identify the network parameters that facilitate the control of schedule risk. A case study of new product development in a high-technology enterprise is presented to demonstrate the proposed methods. The approach will be useful in schedule risk analysis across several problem domains including engineering, environment, management, economic development, etc.
Keywords: Schedule risk; Elasticity analysis; Characteristic function; Project management; Planning; Numerical methods; Graphical user interface (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016304823
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:167:y:2017:i:c:p:464-473
DOI: 10.1016/j.ress.2017.06.010
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().