Generalized Continuous Time Bayesian Networks as a modelling and analysis formalism for dependable systems
Daniele Codetta-Raiteri and
Luigi Portinale
Reliability Engineering and System Safety, 2017, vol. 167, issue C, 639-651
Abstract:
We discuss the main features of Generalized Continuous Time Bayesian Networks (GCTBN) as a dependability formalism: we resort to two specific case studies adapted from the literature, and we discuss modelling choices, analysis results and advantages with respect to other formalisms. From the modelling point of view, GTCBN allow the introduction of general probabilistic dependencies and conditional dependencies in state transition rates of system components. From the analysis point of view, any task ascribable to a posterior probability computation can be implemented, among which the computation of system unreliability, importance indices, system monitoring, prediction and diagnosis.
Keywords: Generalized Continuous Time Bayesian Networks; Reliability analysis; Diagnosis; Sensitivity analysis; Probabilistic models (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017304453
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:167:y:2017:i:c:p:639-651
DOI: 10.1016/j.ress.2017.04.014
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().