A modelling approach for railway overhead line equipment asset management
Paul Kilsby,
Rasa Remenyte-Prescott and
John Andrews
Reliability Engineering and System Safety, 2017, vol. 168, issue C, 326-337
Abstract:
The Overhead Line Equipment (OLE) is a critical sub-system of the 25kV AC overhead railway electrification system. If OLE asset management strategies can be evaluated using a whole lifecycle cost analysis that considers degradation processes and maintenance activities of the OLE components, the investment required to deliver the level of performance desired by railway customers and regulators can be based on evidence from the analysis results. A High Level Petri Net (HLPN) model, proposed in this paper, is used to simulate the degradation, failure, inspection and maintenance of the main OLE components and to calculate various statistics, associated with the cost and reliability of the system over its lifecycle. The HLPN considers all the main OLE components in a single model and it can simulate fixed frequency inspections and condition-based maintenance regimes. In order to allow the relevant processes to be modelled accurately and efficiently, the HLPN features are used, such as specific data about individual components is taken account of in the general model. The HLPN, developed using international standards, is described in detail and a framework of its analysis for reliability and lifecycle cost evaluation is proposed. In this novel whole system model different OLE component types and their instances on a line are modelled simultaneously, and the dependencies are considered in terms of opportunistic inspection and maintenance. An example HLPN for the catenary wire is used to illustrate the model, and an application of the methodology for whole lifecycle cost evaluation of a two-mile OLE line is presented.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016306792
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:168:y:2017:i:c:p:326-337
DOI: 10.1016/j.ress.2017.02.012
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().