Efficient approximate inference in Bayesian networks with continuous variables
Chenzhao Li and
Sankaran Mahadevan
Reliability Engineering and System Safety, 2018, vol. 169, issue C, 269-280
Abstract:
Inference is one key objective in a Bayesian network (BN), and it aims to estimate the posterior distributions of state variables based on evidence (observations). While efficient analytical inference algorithms (either approximate or exact) for BN with discrete variables have been well-established in the literature, the inference in BN with continuous variables is still challenging if the BN is non-linear and/or non-Gaussian. In this case we can either discretize the continuous variable and utilize the inference approaches for discrete BN; or we have to use sampling-based methods such as MCMC for static BN and particle filter for dynamic BN. This paper proposes a network collapsing technique based on the concept of probability integral transform to convert a multi-layer BN to an equivalent simple two-layer BN, so that the unscented Kalman filter can be applied to the collapsed BN and the posterior distributions of state variables can be obtained analytically. For dynamic BN, the proposed method is also able to propagate the state variables to the next time step analytically using the unscented transform, based on the assumption that the posterior distributions of state variables are Gaussian. Thus the proposed method achieves a very fast approximate solution, making it particularly suitable for dynamic BN where inference and uncertainty propagation are required over many time steps.
Keywords: Unscented Kalman filter; Bayesian network; Inference; Continuous variable; Auxiliary variable (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017300674
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:169:y:2018:i:c:p:269-280
DOI: 10.1016/j.ress.2017.08.017
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().