A combined multi-criteria approach to support FMECA analyses: A real-world case
Silvia Carpitella,
Antonella Certa,
Izquierdo, JoaquÃn and
Concetta Manuela La Fata
Reliability Engineering and System Safety, 2018, vol. 169, issue C, 394-402
Abstract:
The paper proposes an approach that combines reliability analyses and multi-criteria decision methods to optimize maintenance activities of complex systems. A failure mode, effects, and criticality analysis (FMECA) is initially performed and the fuzzy TOPSIS (FTOPSIS) method is then applied to rank previously identified failure modes. For prioritization, failure modes are assessed against three evaluation criteria that differ from those traditionally involved in risk priority number (RPN) computation (i.e. severity, occurrence and detection). Two criteria refer to the maintenance management reflecting the operational time taken by the maintenance activity performed after the occurrence of a specific fault, and the way such an action is executed. The third criterion reflects the classical frequency of the occurrence of faults. To further develop previous research, the analytic hierarchy process (AHP) is herein applied to weight evaluation criteria and a group of experts is involved with aspects associated with the considered criteria. The approach is applied to a real-world case study, showing that the obtained results represent a significant driver in planning maintenance activities. To test the influence of criteria weights on ranking results, a sensitivity analysis is carried out by varying the vector of criteria weights obtained from the group decision process.
Keywords: Safety-critical analysis; FMECA; FTOPSIS; AHP (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016301727
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:169:y:2018:i:c:p:394-402
DOI: 10.1016/j.ress.2017.09.017
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().