EconPapers    
Economics at your fingertips  
 

Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data

Xu Wu, Tomasz Kozlowski and Hadi Meidani

Reliability Engineering and System Safety, 2018, vol. 169, issue C, 422-436

Abstract: In nuclear reactor fuel performance simulation, fission gas release (FGR) and swelling involve treatment of several complicated and interrelated physical processes, which inevitably depend on uncertain input parameters. However, the uncertainties associated with these input parameters are only known by “expert judgment†. In this paper, inverse Uncertainty Quantification (UQ) under the Bayesian framework is applied to BISON code FGR model based on Risø-AN3 time series experimental data. Inverse UQ seeks statistical descriptions of the uncertain input parameters that are consistent with the available measurement data. It always captures the uncertainties in its estimates rather than merely determining the best-fit values. Kriging metamodel is applied to greatly reduce the computational cost during Markov Chain Monte Carlo sampling.

Keywords: Inverse uncertainty quantification; Metamodel; Kriging; Nuclear fuel performance analysis; Principal component analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201730532X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:169:y:2018:i:c:p:422-436

DOI: 10.1016/j.ress.2017.09.029

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:422-436