Data-driven learning framework for associating weather conditions and wind turbine failures
Maik Reder,
Yürüşen, Nurseda Y. and
Julio J. Melero
Reliability Engineering and System Safety, 2018, vol. 169, issue C, 554-569
Abstract:
The need for cost effective operation and maintenance (O&M) strategies in wind farms has risen significantly with the growing wind energy sector. In order to decrease costs, current practice in wind farm O&M is switching from corrective and preventive strategies to rather predictive ones. Anticipating wind turbine (WT) failures requires sophisticated models to understand the complex WT component degradation processes and to facilitate maintenance decision making. Environmental conditions and their impact on WT reliability play a significant role in these processes and need to be investigated profoundly. This paper is presenting a framework to assess and correlate weather conditions and their effects on WT component failures. Two approaches, using (a) supervised and (b) unsupervised data mining techniques are applied to pre-process the weather and failure data. An apriori rule mining algorithm is employed subsequently, in order to obtain logical interconnections between the failure occurrences and the environmental data, for both approaches. The framework is tested using a large historical failure database of modern wind turbines. The results show the relation between environmental parameters such as relative humidity, ambient temperature, wind speed and the failures of five major WT components: gearbox, generator, frequency converter, pitch and yaw system. Additionally, the performance of each technique, associating weather conditions and WT component failures, is assessed.
Keywords: Wind turbine; Failure; Weather; Big data; Association rule mining; k-means clustering; Data mining; Machine learning; Operation & maintenance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017300832
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:169:y:2018:i:c:p:554-569
DOI: 10.1016/j.ress.2017.10.004
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().