An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs
T.V. Santhosh,
V. Gopika,
A.K. Ghosh and
B.G. Fernandes
Reliability Engineering and System Safety, 2018, vol. 170, issue C, 31-44
Abstract:
The polymeric materials used for insulation and sheath in instrumentation and control (I&C) cables of nuclear power plants (NPPs) are subjected to degradation due to various stressors. The prediction of long-term aging and lifetime of cables is generally determined based on accelerated life testing (ALT) experiments which are not only expensive but also time consuming. Application of artificial neural networks (ANNs) in the field of transient diagnosis and condition assessment of electrical and other equipment has been a promising technique; however the use of ANN for reliability prediction of I&C cables has not yet been studied. This paper presents an integrated approach to predict the lifetime and reliability of I&C cables by ANN from the accelerated aging data. In order to validate the proposed methodology for use in probabilistic safety assessment (PSA) of NPP to account for the cable failures, ALT data on a typical cross-linked polyethylene (XLPE) insulated I&C cable has been referred from the literature. The time dependent reliability was predicted by considering the various failure rates. Study demonstrates that by an appropriate training algorithm with suitable network architecture, it is possible to predict the reliability of I&C cables by ANN with the minimal accelerated life testing.
Keywords: Artificial neural networks; Insulation resistance; Accelerated life testing; Weibull reliability; Probabilistic safety assessment; Nuclear power plants (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017312152
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:170:y:2018:i:c:p:31-44
DOI: 10.1016/j.ress.2017.10.010
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().