A stochastic hybrid systems model of common-cause failures of degrading components
Mengfei Fan,
Zhiguo Zeng,
Enrico Zio,
Rui Kang and
Ying Chen
Reliability Engineering and System Safety, 2018, vol. 172, issue C, 159-170
Abstract:
Common-Cause Failures (CCFs) are an important threat to safety critical systems. Most existing CCF models assume that the component failure behavior does not vary over time. Such an assumption is often challenged in practice due to the influence of various degradation mechanisms, e.g., wear, corrosion, fatigue, etc. In this paper, we develop a new model for CCFs considering components degradation. The model is developed in the mathematical framework of Stochastic Hybrid Systems (SHS). The CCFs are modeled as random shock processes that affect a group of components simultaneously and the components degradation processes are modeled by stochastic differential equations derived from physics-of-failures. The benefit of using the SHS model for CCFs is that the developed model is analytically solvable. The system reliability can, then, also be solved analytically in closed form. The proposed CCF modelling framework is demonstrated by a numerical example of a three-unit redundant system and, then, applied to an Auxiliary Feedwater Pump (AFP) system of a Nuclear Power Plant (NPP). A comparison to the Binomial Failure Rate (BFR) model of literature shows that by considering the components degradation processes, the proposed model can accurately describe the CCF effect on the reliability of a system with degrading components.
Keywords: Common-cause failures; Random shocks; Component degradation; Stochastic hybrid systems; Binomial failure rate model; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017304143
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:172:y:2018:i:c:p:159-170
DOI: 10.1016/j.ress.2017.12.003
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().