EconPapers    
Economics at your fingertips  
 

Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity

Yuxin Wen, Jianguo Wu, Devashish Das and Tseng, Tzu-Liang(Bill)

Reliability Engineering and System Safety, 2018, vol. 176, issue C, 113-124

Abstract: Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the capability of modeling the evolution of degradation signals. In many practical applications, however, the degradation signals show multiple phases, where the conventional degradation models are often inadequate. To better characterize the degradation signals of multiple-phase characteristics, we propose a multiple change-point Wiener process as a degradation model. To take into account the between-unit heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed random. At the offline stage, an empirical two-stage process is proposed for model estimation, and a cross-validation approach is adopted for model selection. At the online stage, an exact recursive model updating algorithm is developed for online individual model estimation, and an effective Monte Carlo simulation approach is proposed for RUL prediction. The effectiveness of the proposed method is demonstrated through thorough simulation studies and real case study.

Keywords: Wiener process; Multiple change-point model; Degradation modeling; Remaining useful life prediction (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017313625
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:176:y:2018:i:c:p:113-124

DOI: 10.1016/j.ress.2018.04.005

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:176:y:2018:i:c:p:113-124