EconPapers    
Economics at your fingertips  
 

A robust weighted SVR-based software reliability growth model

Lev V. Utkin and Frank P.A. Coolen

Reliability Engineering and System Safety, 2018, vol. 176, issue C, 93-101

Abstract: This paper proposes a new software reliability growth model (SRGM), which can be regarded as an extension of the non-parametric SRGMs using support vector regression to predict probability measures of time to software failure. The first novelty underlying the proposed model is the use of a set of weights instead of precise weights as done in the established non-parametric SRGMs, and to minimize the expected risk in the framework of robust decision making. The second novelty is the use of the intersection of two specific sets of weights, produced by the imprecise ε-contaminated model and by pairwise comparisons, respectively. The sets are chosen in accordance to intuitive conceptions concerning the software reliability behaviour during a debugging process. The proposed model is illustrated using several real data sets and it is compared to the standard non-parametric SRGM.

Keywords: Imprecise contaminated model; Pairwise comparisons; Quadratic programming; Software reliability growth model; Support vector regression (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018304587
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:176:y:2018:i:c:p:93-101

DOI: 10.1016/j.ress.2018.04.007

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:176:y:2018:i:c:p:93-101