Condition-based maintenance of naval propulsion systems: Data analysis with minimal feedback
Francesca Cipollini,
Luca Oneto,
Andrea Coraddu,
Alan John Murphy and
Davide Anguita
Reliability Engineering and System Safety, 2018, vol. 177, issue C, 12-23
Abstract:
The maintenance of the several components of a Ship Propulsion Systems is an onerous activity, which need to be efficiently programmed by a shipbuilding company in order to save time and money. The replacement policies of these components can be planned in a Condition-Based fashion, by predicting their decay state and thus proceed to substitution only when really needed. In this paper, authors propose several Data Analysis supervised and unsupervised techniques for the Condition-Based Maintenance of a vessel, characterised by a combined diesel-electric and gas propulsion plant. In particular, this analysis considers a scenario where the collection of vast amounts of labelled data containing the decay state of the components is unfeasible. In fact, the collection of labelled data requires a drydocking of the ship and the intervention of expert operators, which is usually an infrequent event. As a result, authors focus on methods which could allow only a minimal feedback from naval specialists, thus simplifying the dataset collection phase. Confidentiality constraints with the Navy require authors to use a real-data validated simulator and the dataset has been published for free use through the OpenML repository.
Keywords: Data analysis; Naval propulsion systems; Condition-based maintenance; Supervised learning; Unsupervised learning; Novelty detection; Minimal feedback. (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017309973
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:177:y:2018:i:c:p:12-23
DOI: 10.1016/j.ress.2018.04.015
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().