A control-guided failure restoration framework for the design of resilient engineering systems
Nita Yodo and
Pingfeng Wang
Reliability Engineering and System Safety, 2018, vol. 178, issue C, 179-190
Abstract:
When failures are inevitable, a resilient system is expected to restore ideal performance in a timely manner. The resilience of a system can be improved by enhancing the post-failure restoration ability of the system. In order to determine whether resilience in a system is sufficient towards a certain failure, a set of design parameters and performance equations describing the system behavior are essential in performing a resilience assessment. However, in implicit system applications, one of the main concerns is that there are no clearly defined system equations to describe system performance. To overcome this challenge, this paper presents a control-guided failure restoration (CGFR) framework, which combines dynamic system modeling and resilience analysis. Since there are no clearly defined system equations in implicit systems, the dynamic system modeling in the proposed framework is equipped with an artificial neural network to learn system behaviors. To demonstrate the feasibility of the proposed approach, a power transmission system is employed as a case study. The presented study aims to encourage the development of advanced failure restoration strategies for resilient engineered systems.
Keywords: Reliability; Resilience; Failure restoration; Control theory; Implicit systems; Engineering design (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017310827
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:178:y:2018:i:c:p:179-190
DOI: 10.1016/j.ress.2018.05.018
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().