Improved inverse Gaussian process and bootstrap: Degradation and reliability metrics
Jingbo Guo,
Changxi Wang,
Javier Cabrera and
Elsayed A. Elsayed
Reliability Engineering and System Safety, 2018, vol. 178, issue C, 269-277
Abstract:
The inverse Gaussian (IG) process is commonly used in modeling monotonically increasing degradation processes. Traditional degradation modeling considers the process parameters as functions of time and environmental conditions. However, in many practical situations, the degradation increment in the next time interval may depend on degradation state at the current time interval. Therefore, in this paper, we propose an improved inverse Gaussian (IIG) process which considers the dependency between degradation increments and prior degradation states. Reliability metrics of the IIG process are estimated and validated using crack length growth data as well as simulated degradation data. Results show that the proposed model provides more accurate reliability metrics than the IG process model. Bootstrap of degradation increments or detrended degradation increments is introduced as a supplementary method to estimate the remaining life probability interval.
Keywords: Improved inverse Gaussian process; Degradation; Reliability; Bootstrap; Remaining life (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017314102
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:178:y:2018:i:c:p:269-277
DOI: 10.1016/j.ress.2018.06.013
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().