Bayesian prediction for a jump diffusion process – With application to crack growth in fatigue experiments
Simone Hermann,
Katja Ickstadt and
Müller, Christine H.
Reliability Engineering and System Safety, 2018, vol. 179, issue C, 83-96
Abstract:
In many fields of technological developments, understanding and controlling material fatigue is an important point of interest. This article is concerned with statistical modeling of the damage process of prestressed concrete under low cyclic load. A crack width process is observed which exhibits jumps with increasing frequency. Firstly, these jumps are modeled using a Poisson process where two intensity functions are presented and compared. Secondly, based on the modeled jump process, a stochastic process for the crack width is considered through a stochastic differential equation (SDE). It turns out that this SDE has an explicit solution. For both modeling steps, a Bayesian estimation and prediction procedure is presented.
Keywords: Nonhomogeneous Poisson process (NHPP); Crack growth; Bayesian estimation; Predictive distribution (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016303702
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:179:y:2018:i:c:p:83-96
DOI: 10.1016/j.ress.2016.08.012
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().