A random-effects Wiener degradation model based on accelerated failure time
Qingqing Zhai,
Piao Chen,
Lanqing Hong and
Lijuan Shen
Reliability Engineering and System Safety, 2018, vol. 180, issue C, 94-103
Abstract:
Due to the variability of raw materials and the fluctuation in the manufacturing process, degradation of products may exhibit unit-to-unit variability in a population. The heterogeneous degradation rates can be viewed as random effects, which are often modeled by a normal distribution. Despite of its mathematical convenience, the normal distribution has certain limitations in modeling the random effects. In this study, we propose a novel random-effects Wiener process model based on ideas from accelerated failure time principle. An inverse Gaussian (IG) distribution can be used to characterize the unit-specific heterogeneity in degradation paths, which overcomes the disadvantages of the traditional models and provides more flexibility in the degradation modeling using Wiener processes. Properties of the model are investigated, and statistical inference based on the maximum likelihood estimation and the EM algorithm is established. An extension of the model to the constant-stress accelerated degradation test (ADT) is developed. The effectiveness and applicability of the proposed model are validated using a laser degradation dataset and an LED ADT dataset.
Keywords: Unit-to-unit heterogeneity; Inverse Gaussian distribution; Maximum likelihood estimation; EM algorithm; Accelerated degradation test (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018300140
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:180:y:2018:i:c:p:94-103
DOI: 10.1016/j.ress.2018.07.003
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().