Exact calculation of network robustness
Grace Lordan and
Maria Albareda-Sambola
Reliability Engineering and System Safety, 2019, vol. 183, issue C, 276-280
Abstract:
Finding the most critical nodes regarding network connectivity has attracted the attention of many researchers in infrastructure networks, power grids, transportation networks and physics in complex networks. Static robustness of networks under intentional attacks analyses the ability of a system to maintain its connectivity after the disconnection or deletion of a series of targeted nodes. In this context, connectivity is typically measured by the size of the remaining largest connected component. When targeting these nodes, previous literature has mostly used adaptive strategies that sequentially remove central nodes, or created heuristics in order to improve the results of the adaptive strategies. The proposed methodology based on mathematical programming allows to identify, for every fraction of disconnected or removed nodes, the set that minimizes the size of the largest connected component of a network, i.e. it allows to calculate the exact (most critical) robustness of a network.
Keywords: Robustness; Complex networks; Optimization; MILP (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018307671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:183:y:2019:i:c:p:276-280
DOI: 10.1016/j.ress.2018.11.020
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().