EconPapers    
Economics at your fingertips  
 

An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction

Zhixiong Li, Dazhong Wu, Chao Hu and Janis Terpenny

Reliability Engineering and System Safety, 2019, vol. 184, issue C, 110-122

Abstract: Remaining useful life (RUL) prediction is crucial for the implementation of predictive maintenance strategies. While significant research has been conducted in model-based and data-driven prognostics, there has been little research reported on the RUL prediction using an ensemble learning method that combines prediction results from multiple learning algorithms. The objective of this research is to introduce a new ensemble prognostics method that takes into account the effects of degradation on the accuracy of RUL prediction. Specifically, this method assigns an optimized, degradation-dependent weight to each learner (i.e., learning algorithm) such that the weighted sum of the prediction results from all the learners predicts the RULs of engineered systems with better accuracy. The ensemble prognostics method is demonstrated using two case studies. One case study is to predict the RULs of aircraft bearings; the other is to predict the RULs of aircraft engines. The numerical results have shown that the predictive model trained by the ensemble learning-based prognostic approach with degradation-dependent weights is capable of outperforming the original ensemble learning-based approach and its member algorithms.

Keywords: Degradation-dependent weights; Remaining useful life; Prognostics; Ensemble learning; Locally weighted regression (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017308104
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:184:y:2019:i:c:p:110-122

DOI: 10.1016/j.ress.2017.12.016

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:184:y:2019:i:c:p:110-122