EconPapers    
Economics at your fingertips  
 

Remaining useful life estimation in aeronautics: Combining data-driven and Kalman filtering

Marcia Baptista, Henriques, Elsa M.P., Ivo P. de Medeiros,, Malere, Joao P., Nascimento, Cairo L. and Helmut Prendinger

Reliability Engineering and System Safety, 2019, vol. 184, issue C, 228-239

Abstract: Data-driven prognostics can be described in two sequential steps: a training stage, in which, the data-driven model is constructed based on observations; and a prediction stage, in which, the model is used to compute the end of life and remaining useful life of systems. Often, these predictions are noisy and difficult to integrate. A technique well known for its integrative and robustness abilities is the Kalman filter. In this paper we study the applicability of the Kalman filter to filter the estimates of remaining useful life. Using field data from an aircraft bleed valve we conduct a number of real case experiments investigating the performance of the Kalman filter on five data-driven prognostics approaches: generalized linear models, neural networks, k-nearest neighbors, random forests and support vector machines. The results suggest that Kalman-based models are better in precision and convergence. It was also found that the Kalman filtering technique can improve the accuracy and the bias of the original regression models near the equipment end of life. Here, the approach with the best overall improvement was the nearest neighbors, which suggests that Kalman filters may work the best for instance-based methods.

Keywords: Aircraft prognostics; Data-driven techniques; Kalman filter; Aeronautics; Real case study (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201731075X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:184:y:2019:i:c:p:228-239

DOI: 10.1016/j.ress.2018.01.017

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:184:y:2019:i:c:p:228-239