Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process
M.H. Ling,
H.K.T. Ng and
K.L. Tsui
Reliability Engineering and System Safety, 2019, vol. 184, issue C, 77-85
Abstract:
Remaining useful life prediction has been one of the important research topics in reliability engineering. For modern products, due to physical and chemical changes that take place with usage and with age, a significant degradation rate change usually exists. Degradation models that do not incorporate a change point may not accurately predict the remaining useful life of products with two-phase degradation. For this reason, we consider the degradation analysis for products with two-phase degradation under gamma processes. Incorporating a probability distribution of the time at which the degradation rate changes into the degradation model, the remaining useful life prediction for a single product can be obtained, even though the rate change has not occurred during the inspection. A Bayesian approach and a likelihood approach via stochastic expectation-maximization algorithm are proposed for the statistical inference of the remaining useful life. A simulation study is carried out to evaluate the performance of the developed methodologies to the remaining useful life prediction. Our results show that the likelihood approach yields relatively less bias and more reliable interval estimates, while the Bayesian approach requires less computational time. Finally, a real dataset on LEDs is presented to demonstrate an application of the proposed methodologies.
Keywords: Degradation models; Gamma process; Change point; Bayesian; Stochastic expectation-maximization; Remaining useful life (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017303083
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:184:y:2019:i:c:p:77-85
DOI: 10.1016/j.ress.2017.11.017
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().