EconPapers    
Economics at your fingertips  
 

Noise-dependent ranking of prognostics algorithms based on discrepancy without true damage information

Yiwei Wang, Christian Gogu, Nam H. Kim, Raphael T. Haftka, Nicolas Binaud and Christian Bes

Reliability Engineering and System Safety, 2019, vol. 184, issue C, 86-100

Abstract: In this paper, an interesting observation on the noise-dependent performance of prognostics algorithms is presented. A method of evaluating the accuracy of prognostics algorithms without having the true degradation model is proposed. This paper compares the four most widely used model-based prognostics algorithms, i.e., Bayesian method, particle filter, Extended Kalman filter, and nonlinear least squares, to illustrate the effect of random noise in data on the performance of prediction. The mean squared error (MSE) that measures the difference between the true damage size and the predicted one is used to rank the four algorithms for each dataset. We found that the randomness in the noise leads to a very different ranking of the algorithms for different datasets, even though they are all from the same damage model. In particular, even for the algorithm that has the best performance on average, poor results can be obtained for some datasets. In absence of true damage information, we propose another metric, mean squared discrepancy (MSD), which measures the difference between the prediction and the data. A correlation study between MSE and MSD indicates that MSD can be used to estimate the ranking of the four prognostics algorithms without having the true damage information. Moreover, the best algorithm selected by MSD has a high probability of also having the smallest prediction error when used for predicting beyond the last measurement. MSD can thus be particularly useful for selecting the best algorithm for predicting into the near future for a given set of measurements.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017301138
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:184:y:2019:i:c:p:86-100

DOI: 10.1016/j.ress.2017.09.021

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:184:y:2019:i:c:p:86-100