Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system
Kayu Tang,
David J. Parsons and
Simon Jude
Reliability Engineering and System Safety, 2019, vol. 186, issue C, 24-36
Abstract:
The reliability of the water distribution system is critical to maintaining a secure supply for the population, industry and agriculture, so there is a need for proactive maintenance to help reduce water loss and down times. Bayesian networks are one approach to modelling the complexity of water mains, to assist water utility companies in planning maintenance. This paper compares and analyses how accurately the Bayesian network structure can be derived given a large and highly variable dataset. Method one involved using automated learning algorithms to build the Bayesian network, while method two involved a guided method using a combination of historic failure data, prior knowledge and pre-modelling data exploration of the water mains. By understanding common failure types (circumferential, longitudinal, pinhole and joint), the guided learning Bayesian Network was able to capture the interactions of the surrounding soil environment with the physical properties of pipes. The Bayesian network built using data exploration and literature was able to achieve an overall accuracy of 81.2% when predicting the specific type of water mains failure compared to the 84.4% for the automated method. The slightly greater accuracy from the automated method was traded for a sparser Bayes net where the interpretation of the interactions between the variables was clearer and more meaningful.
Keywords: Bayesian networks; Asset management; Reliability; Infrastructure; Statistics; Water (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017309377
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:186:y:2019:i:c:p:24-36
DOI: 10.1016/j.ress.2019.02.001
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().