A nonparametric importance sampling estimator for moment independent importance measures
Pierre Derennes,
Morio, Jérôme and
Florian Simatos
Reliability Engineering and System Safety, 2019, vol. 187, issue C, 3-16
Abstract:
Moment independent importance measures have been proposed by Borgonovo [1] in order to alleviate some of the drawbacks of variance-based sensibility indices. They have gained increasing attention over the last years but their estimation remains a challenging issue. An effective estimation scheme in the case of correlated inputs, referred to as single-loop method, has been proposed by Wei et al. [2]. In this paper we show via simulation that this method may be inaccurate, making for instance 40% error in the simplest possible Gaussian case. We then propose a new estimation scheme which greatly improves the accuracy of the single-loop method, up to a factor 10 in some simple numerical examples. We prove that our estimator is strongly consistent and several simulation results are presented to demonstrate the advantages of the proposed method.
Keywords: Monte Carlo simulation; Importance sampling; Density-based sensitivity analysis; Importance measures (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017307883
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:187:y:2019:i:c:p:3-16
DOI: 10.1016/j.ress.2018.02.009
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().