EconPapers    
Economics at your fingertips  
 

Degradation state mining and identification for railway point machines

Chong Bian, Shunkun Yang, Tingting Huang, Qingyang Xu, Jie Liu and Enrico Zio

Reliability Engineering and System Safety, 2019, vol. 188, issue C, 432-443

Abstract: Critical point machine failure in railway-signal systems can lead to fatal accidents. Hence, early identification of anomalies is vital in guaranteeing reliable and safe transportation. However, most of the existing early fault diagnosis methods can only estimate the degradation trend under a specific fault mode. How to analyze the diversified degradation conditions under multiple fault modes is still a key problem. Considering the diversity of fault modes, this study proposes an early fault diagnosis method based on self-organizing feature map network and support vector machine, focusing on the use of non-fault data to simultaneously mine and accurately identify degradation states under different fault modes, to provide guidance for proactive machine maintenance. The experimental results obtained via application of this scheme to field data for railway point machines demonstrate that the proposed methodology can effectively mine and accurately identify degradation states with different machine characteristics.

Keywords: Degradation state mining; Degradation state identification; Early fault diagnosis; Railway point machine; Self-organizing mapping; Support vector machine (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S095183201831144X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:188:y:2019:i:c:p:432-443

DOI: 10.1016/j.ress.2019.03.044

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:432-443