A novel method for risk-informed decision-making under non-ideal Instrumentation and Control conditions through the application of Bayes’ Theorem
Tu Guang Tan,
Sunghyon Jang and
Akira Yamaguchi
Reliability Engineering and System Safety, 2019, vol. 188, issue C, 463-472
Abstract:
Instrumentation and Control systems are often assumed to break and give no readings under certain conditions, but working perfectly otherwise. In reality, aleatory and epistemic factors create a grey area where operators are often unsure of the validity of sensor measurements. Through the use of Bayes’ Theorem, this paper proposes a novel approach that first characterizes both aleatory and epistemic uncertainty, and then combines all available information in a Bayesian network, in order to produce quantitative estimates of unobservable variables in the system. Uncertainties are also propagated from sources to results in a natural manner. The approach was applied to a test case, and was able to identify a Vessel Break transient with quantitative probabilities in a timely manner despite the information being scarce, uncertain, and heterogeneous. The approach was thus demonstrated to be a possible alternative method for decision-making under such non-ideal conditions.
Keywords: Instrumentation and Control; Uncertainty; Risk-informed decision-making; Bayesian network (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018308950
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:188:y:2019:i:c:p:463-472
DOI: 10.1016/j.ress.2019.03.051
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().