A Monte-Carlo Markov chain approach for coverage-area reliability of mobile wireless sensor networks with multistate nodes
Suparna Chakraborty,
N.K. Goyal,
S. Mahapatra and
Sieteng Soh
Reliability Engineering and System Safety, 2020, vol. 193, issue C
Abstract:
A mobile Wireless Sensor Network (mWSN) is composed of a large number of tiny, inexpensive resource-constrained sensors scattered in the field of interest, with the sink node or the data collector moving around the field. One fundamental concern of an mWSN is to provide application-specific coverage of the area under surveillance. The reliability of an mWSN depends on sensing area coverage, network connectivity, and data handling capacity of the mWSN in the presence of multi-state sensors. To mention here, each sensor node during its life cycle may exist in ACTIVE, SLEEP, RELAY, IDLE or FAIL states due to hardware failure, random duty cycle and/or energy limitations. Under such constraints, to quantify application-specific coverage oriented reliability, a new coverage-reliability index, CORE, is introduced. CORE gives a measure of the ability of a sensor network with multi-state nodes to satisfy the application-specific coverage area requirement with reliable data delivery to the mobile sink. A Monte-Carlo Markov Chain simulation approach is proposed for evaluating CORE. The conducted computational experiments are carried on mWSNs of various sizes to demonstrate the versatility of the proposed approach.
Keywords: Coverage area reliability; Random duty cycle; Markov Chain Monte-Carlo; WSN; Node energy; Network reliability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019300353
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019300353
DOI: 10.1016/j.ress.2019.106662
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().