EconPapers    
Economics at your fingertips  
 

Space mission resilience with inter-satellite networking

Christopher J. Lowe and Malcolm Macdonald

Reliability Engineering and System Safety, 2020, vol. 193, issue C

Abstract: Satellites typically operate in isolation from their orbiting counterparts, but communicating only with ground-based infrastructure leaves them susceptible to the consequences of on-board anomalies. Loss of payload, communication system, or other sub-system function could render the entire satellite inoperable. This susceptibility can be partially mitigated through the addition of an inter-satellite networking capability, which offers value in terms of increased general performance and an increased resilience to on-board anomalies. While a typical platform can be modelled to exhibit only two fundamental states: operational and failed, a networking-capable platform (specifically one with an inter-satellite communication capability) exhibits six states, each reached through a unique combination of sub-system malfunctions. The result of this added resilience is a reduction in the likelihood of the satellite reaching a fully-failed state. Simulations for independent and networking-capable systems are presented that illustrate the benefits and limitations of inter-satellite networking in terms of failure resilience. It is shown that whilst a networked system can be expected to reach greater levels of performance utility, sub-system anomalies are found to result in greater percentage levels of performance degradation compared to a non-networking-capable system with similar characteristics.

Keywords: Satellite; Space; Networking; Markov; Monte-Carlo; Value; Failure; Anomaly (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019303850
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019303850

DOI: 10.1016/j.ress.2019.106608

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019303850