EconPapers    
Economics at your fingertips  
 

Optimization of time constrained N-version programming service components with competing task execution and version corruption processes

Gregory Levitin, Liudong Xing and Yanping Xiang

Reliability Engineering and System Safety, 2020, vol. 193, issue C

Abstract: This paper models a software service component implementing the N-version programming (NVP) redundancy on the cloud computing platform to enhance the service reliability. Specifically, multiple versions of the same service component are activated in parallel on different servers of the cloud to perform the requested service. At required service response time, the output is determined based on a threshold first-past-the-post voting rule (output with the most votes and the number of these votes exceeds a predetermined threshold). However, effectiveness of the NVP approach can be greatly compromised by co-residence attacks, a common type of cyber-attacks launched to corrupt user's service through co-residing user's and attacker's virtual machines on the same cloud server. This paper formulates and solves an optimization problem, particularly, a minmax game problem that finds the number of service component versions (SCVs) and the threshold to maximize the user's utility while considering a strategic attack behavior aiming to maximize the attacker's utility. The solution methodology encompasses a probabilistic model of evaluating the service success probability (SSP) and corruption attack success probability (CAP), two performance metrics used in the computation of the user's and attacker's utilities. Examples are analyzed to demonstrate influences of different model parameters on SSP, CAP, and solutions to the considered optimization problem.

Keywords: Co-residence attack; N-version programming; First-past-the-post voting; Threshold; Minmax game (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019305575
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019305575

DOI: 10.1016/j.ress.2019.106666

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019305575