Efficient dimension reduction and surrogate-based sensitivity analysis for expensive models with high-dimensional outputs
Min Li,
Ruo-Qian Wang and
Gaofeng Jia
Reliability Engineering and System Safety, 2020, vol. 195, issue C
Abstract:
Sensitivity analysis has been widely used to gain more insights on complex system behavior, to facilitate model reduction, system design and decision making. Typically, sensitivity analysis entails many evaluations of the system model. For expensive system models with high-dimensional outputs, direct adoption of such models for sensitivity analysis poses significant challenges in computational effort and memory requirements. To address these challenges, this paper proposes an efficient sensitivity analysis approach. The proposed method uses surrogate model to replace the expensive model for sensitivity analysis, and tackle the problem of building surrogate models for high-dimensional outputs through surrogate model integrated with dimension reduction. More specifically, the proposed method first uses surrogate models in low-dimensional latent output space to efficiently calculate the relevant covariance matrices for the low-dimensional latent outputs, and then directly establishes the sensitivity indices for the original high-dimensional output based on these covariance matrices and the derived transformation. Two examples are presented to demonstrate the efficiency and accuracy of the proposed method.
Keywords: Sensitivity analysis; Kriging surrogate model; High-dimensional outputs; Dimension reduction; Principal component analysis; Sobol’ index (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832018315758
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:195:y:2020:i:c:s0951832018315758
DOI: 10.1016/j.ress.2019.106725
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().