An effective parametric model reduction technique for uncertainty propagation analysis in structural dynamics
H.A. Jensen,
F. Mayorga,
M. Valdebenito and
J. Chen
Reliability Engineering and System Safety, 2020, vol. 195, issue C
Abstract:
An efficient formulation for uncertainty propagation analysis of complex structural models is presented. The formulation is based on parametric reduced-order models. Fixed-interface normal modes and interface modes are approximated in terms of a set of support points in the uncertain parameter space. The potential time-consuming step of computing the modes for different values of the model parameters needs to be performed only at the support points. Based on these approximate modes, reduced-order matrices can be updated efficiently during the simulation process associated with the uncertainty propagation analysis. The effectiveness of the proposed parametric model reduction technique is demonstrated by means of two numerical examples.
Keywords: Interface reduction; Nonlinear finite element models; Reduced-order models; Random fields; Structural dynamics; Uncertainty propagation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019301255
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019301255
DOI: 10.1016/j.ress.2019.106723
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().