Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation
Joseph B. Nagel,
Rieckermann, Jörg and
Bruno Sudret
Reliability Engineering and System Safety, 2020, vol. 195, issue C
Abstract:
This paper presents an efficient surrogate modeling strategy for the uncertainty quantification and Bayesian calibration of a hydrological model. In particular, a process-based dynamical urban drainage simulator that predicts the discharge from a catchment area during a precipitation event is considered. The goal of the case study is to perform a global sensitivity analysis and to identify the unknown model parameters as well as the measurement and prediction errors. These objectives can only be achieved by cheapening the incurred computational costs, that is, lowering the number of necessary model runs. With this in mind, a regularity-exploiting metamodeling technique is proposed that enables fast uncertainty quantification. Principal component analysis is used for output dimensionality reduction and sparse polynomial chaos expansions are used for the emulation of the reduced outputs. Sobol’ sensitivity indices are obtained directly from the expansion coefficients by a mere post-processing. Bayesian inference via Markov chain Monte Carlo posterior sampling is drastically accelerated.
Keywords: Uncertainty quantification; Surrogate modeling; Polynomial chaos expansions; Principal component analysis; Dimension reduction; Sensitivity analysis; Bayesian calibration; Urban drainage simulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019301747
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019301747
DOI: 10.1016/j.ress.2019.106737
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().