EconPapers    
Economics at your fingertips  
 

A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty

John McFarland and Erin DeCarlo

Reliability Engineering and System Safety, 2020, vol. 197, issue C

Abstract: Probabilistic methods are used with modeling and simulation to predict variation in system performance and assess risk due to randomness in model inputs such as material properties, loads, and boundary conditions. It is common practice to assume that the input distributions are known. However, this discounts the epistemic uncertainty in the values of the distribution parameters, which can be attributed to the availability of limited data to define the input distributions. This paper proposes a Monte Carlo framework for unified treatment of both aleatory and epistemic uncertainty types when assessing system performance and risk. A Bayesian philosophy is adopted, whereby epistemic uncertainty is characterized using probability theory. Several computational approaches are outlined for propagation and sensitivity analysis with distribution parameter uncertainty. As a result of the outlined framework, the overall influence of epistemic uncertainties can be quantified in terms of confidence bounds on statistical quantities such as failure probability, and the relative influence of each source of epistemic uncertainty is quantified using variance decomposition. The proposed methods are demonstrated using both an analytical example and a fatigue crack growth analysis.

Keywords: Probabilistic analysis; Uncertainty quantification; Epistemic uncertainty; Monte Carlo; Sensitivity analysis; Variance decomposition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019307446
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019307446

DOI: 10.1016/j.ress.2020.106807

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019307446