EconPapers    
Economics at your fingertips  
 

A resilience measure formulation that considers sensor faults

Minji Yoo, Taejin Kim, Joung Taek Yoon, Yunhan Kim, Sooho Kim and Byeng D. Youn

Reliability Engineering and System Safety, 2020, vol. 199, issue C

Abstract: Resilience is the probability that the system will not fail through resistance and recovery efforts. Most resilience studies to date have been performed with an assumption of no false alarms. However, in real-world settings, there are many possible causes of false alarms; one major cause is sensor faults. Therefore, this study proposes a newly formulated engineering resilience measure that considers sensor faults. The proposed measure is formulated in a probabilistic manner, and includes accurate system health state estimation, system reliability, and sensor reliability. In this research, the effectiveness of the proposed resilience measure is demonstrated by implementing prognostics and health management (PHM) into an electro-hydrostatic actuator (EHA). In the system, the sensor states affect the resilience of the system by misjudging the estimation of the system health state. The study shows how the proposed idea correctly estimates the resilience of the system under sensor degradation and fault. Finally, the accuracy of the proposed measure is compared with the two prior resilience measures. It is determined that the results of the proposed measure are superior for systems with low sensor reliability.

Keywords: Resilience; Resilience measure; Sensor faults; Prognostics and health management (PHM); Electro†hydrostatic actuator (EHA) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832017311031
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:199:y:2020:i:c:s0951832017311031

DOI: 10.1016/j.ress.2019.02.025

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832017311031