Industrial equipment reliability estimation: A Bayesian Weibull regression model with covariate selection
M. Compare,
P. Baraldi,
I. Bani,
E. Zio and
D. McDonnell
Reliability Engineering and System Safety, 2020, vol. 200, issue C
Abstract:
A three-state continuous-time semi-Markov process is used to model the degradation of an industrial equipment. The transition times are assumed Weibull-distributed and influenced by a set of covariates. A Weibull Regression Model is developed within the Bayesian probability framework, to account for the influence of these covariates and estimate the model parameters with the related uncertainty, on the basis of few data and expert judgment. The number of covariates is reduced by a two-step selection procedure derived from the condition monitoring engineering practice. The developed model enables estimating reliability and time-dependent state probabilities for a component degrading in given operational and ambient conditions, represented by a vector of covariates. The model is illustrated by way of a real case study concerning the degradation process affecting diaphragm valves used in the biopharmaceutical industry.
Keywords: Multi-state degradation modelling; Weibull regressions model; Variable selection; Bayesian inference; MCMC algorithms (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019300481
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019300481
DOI: 10.1016/j.ress.2020.106891
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().