Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures
Atin Roy and
Subrata Chakraborty
Reliability Engineering and System Safety, 2020, vol. 200, issue C
Abstract:
Support vector regression (SVR) based metamodel is a powerful mean to alleviate computational challenge of Monte Carlo simulation (MCS) based reliability analysis of structure involving implicit limit state function. But, the sample size requirement is an important issue to achieve accuracy of estimated reliability. A two-stage iterative algorithm is explored to address this issue. The algorithm is hinged on the prediction accuracy of a metamodel near the failure surface region. In the first stage, an initial design of experiment is built by a space-filling design over the entire physical domain of the random variables. In the next stage, based on the prediction at MCS points using the previous SVR model, a subset of MCS samples are selected. These are now used to enrich existing design by adding more data points sequentially such that the new points are closer to the limit state and also as far as possible from the existing points. A comparative performance of reliability estimate by SVR with the proposed sequential adaptive approach and that of obtained by the relevance vector machines, Kriging and moving least square method based metamodels are performed to numerically demonstrate the improved reliability estimation capability of the proposed approach.
Keywords: Reliability; Monte Carlo simulation; Metamodel; Support vector regression; Sequential adaptive sampling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019307549
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019307549
DOI: 10.1016/j.ress.2020.106948
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().