A review on quantile regression for stochastic computer experiments
Torossian, Léonard,
Victor Picheny,
Robert Faivre and
Garivier, Aurélien
Reliability Engineering and System Safety, 2020, vol. 201, issue C
Abstract:
We report on an empirical study of the main strategies for quantile regression in the context of stochastic computer experiments. To ensure adequate diversity, six metamodels are presented, divided into three categories based on order statistics, functional approaches, and those of Bayesian inspiration. The metamodels are tested on several problems characterized by the size of the training set, the input dimension, the signal-to-noise ratio and the value of the probability density function at the targeted quantile. The metamodels studied reveal good contrasts in our set of experiments, enabling several patterns to be extracted. Based on our results, guidelines are proposed to allow users to select the best method for a given problem.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019300638
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:201:y:2020:i:c:s0951832019300638
DOI: 10.1016/j.ress.2020.106858
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().