A conservative confidence bound for the probability of failure on demand of a software-based system based on failure-free tests of its components
Peter Bishop and
Andrey Povyakalo
Reliability Engineering and System Safety, 2020, vol. 203, issue C
Abstract:
The standard approach to deriving the confidence bound for the probability of failure on demand (pfd) of a software-based system is to perform statistical tests on the whole system as a “black-box†. In practice, performing tests on the entire system may be infeasible for logistical reasons, such as lack of availability of all component subsystems at the same time during implementation. This paper presents a general method for deriving a confidence bound for the overall system from successful independent tests on individual system components. In addition, a strategy is presented for optimizing the number of tests allocated to system components for an arbitrary system architecture that minimizes the confidence bound for the system pfd. For some system architectures, we show that an optimum allocation of component tests is as effective as tests on the complete system for demonstrating a given confidence bound. The confidence bound calculation makes use of many of the concepts used in the reliability analysis of hardware structures, but unlike a conventional hardware analysis, the method does not presume statistical independence of failures between software components, so the confidence bound calculation for the software should always be conservative.
Keywords: Statistical testing; Confidence bounds; Software reliability; Fault tolerance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020305615
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020305615
DOI: 10.1016/j.ress.2020.107060
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().