Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model
Rui Zheng,
Bingkun Chen and
Liudong Gu
Reliability Engineering and System Safety, 2020, vol. 204, issue C
Abstract:
The hazard rate of many practical systems depends not only on age but also on a diagnostic covariate process. Effective maintenance decisions for such systems need to combine both age information and the covariate information obtained from condition monitoring. This paper proposes a condition-based maintenance (CBM) policy with dynamic thresholds and multiple maintenance actions for such a system subject to periodic inspection. The hazard rate is described by the proportional hazards model with a continuous-state covariate process. At each inspection epoch, appropriate action is selected from no maintenance, imperfect maintenance, and preventive replacement based on two dynamic thresholds. Over an inspection interval, the system may experience minor failure or catastrophic failure that can be addressed by minimal repair and corrective replacement, respectively. The objective is to determine the optimal thresholds that minimize the long-run average cost rate. A modified policy-iteration algorithm is developed to solve the optimization problem in the semi-Markov decision process (SMDP) framework. The effectiveness of the proposed approach is illustrated by a practical numerical example. The comparison with the other CBM policies confirms the outstanding performance of the proposed policy.
Keywords: Condition-based maintenance; Dynamic thresholds; Multiple maintenance actions; Proportional hazards model; Policy-iteration algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020306244
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:204:y:2020:i:c:s0951832020306244
DOI: 10.1016/j.ress.2020.107123
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().