EconPapers    
Economics at your fingertips  
 

Availability importance measures of components in smart electric power grid systems

Junjun Zheng, Hiroyuki Okamura, Taoming Pang and Tadashi Dohi

Reliability Engineering and System Safety, 2021, vol. 205, issue C

Abstract: The emergence of the smart grid has brought great innovation in the new distribution power system, facilitated a green and sustainable energy-based society, and mitigated the growing energy crisis. The smart grid is regarded as the next generation electrical power grid. It not only improves the power distribution systems with the techniques of distributed generation, but also makes the systems more complicated than the traditional ones. Thus it is important to evaluate the availability of smarts grids and to indicate the vulnerable parts of the systems. In this paper, a hierarchical model consisting of a layered fault tree (FT) and continuous-time Markov chains (CTMCs) is presented to model a smart grid system with two different power supply modes. We also analyze the component importance of the system, aiming to find the weak parts of the system thereby improving the system design. The importance analysis of components is based on parametric sensitivities and binary decision diagram (BDD) representation for the FTs. In a numerical illustration, we quantify the availability of the system with two power supply modes and also evaluate the importance of all components in the system.

Keywords: Component importance; Fault tree; Continuous-time Markov chain; Binary decision diagram; System availability; Smart grid; Power supply mode (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020306657
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020306657

DOI: 10.1016/j.ress.2020.107164

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020306657