Optimal stopping problems for mission oriented systems considering time redundancy
Qingan Qiu,
Meng Kou,
Ke Chen,
Qiao Deng,
Fengming Kang and
Cong Lin
Reliability Engineering and System Safety, 2021, vol. 205, issue C
Abstract:
Catastrophic failures of safety-critical systems could result in irretrievable economic losses and damage. To enhance the survivability of safety-critical systems, a mission can be terminated if the failure risk becomes too high. Time redundancy can be commonly observed in many practical systems where missions can be executed multiple times during a constrained time to improve the mission reliability. This paper investigates the optimal mission abort policies for systems with continuous degradation considering two types of time redundancy. Under type I time redundancy, the system should keep operational continuously for a time period greater than a specific value. In the second case, mission success requires that the cumulative working time should be greater than the given value. Dynamic mission abort decisions are considered based on the degradation level and mission attempts. Mission reliability and system survivability are derived under two types of time redundancy. The optimal mission abort threshold in each attempt is investigated to minimize the expected total cost of mission failure and system failure. A case study is presented to illustrate the obtained results.
Keywords: Mission abort; Time redundancy; Mission reliability; System survivability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020307225
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307225
DOI: 10.1016/j.ress.2020.107226
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().