Quantitative resilience assessment of chemical process systems using functional resonance analysis method and Dynamic Bayesian network
Altyngul Zinetullina,
Ming Yang,
Nima Khakzad,
Boris Golman and
Xinhong Li
Reliability Engineering and System Safety, 2021, vol. 205, issue C
Abstract:
The emergent hazards of chemical process systems cannot be wholly identified and are highly uncertain due to the complicated technical-human-organizational interactions. Under uncertain and unpredictable circumstances, resilience becomes an essential property of a chemical process system that helps it better adapt to disruptions and restore from surprising damages. The resilience assessment needs to be enhanced to identify the accident's root causes on the level of technical-human-organizational interactions, and development of the specific resilience attributes to withstand or recover from the disruptions. The outcomes of resilience assessment are valuable to identify potential design or operational improvements to ensure complex process system functionality and safety. The current study integrates the Functional Resonance Analysis Method and dynamic Bayesian Network for quantitative resilience assessment. The method is demonstrated through a two-phase separator of an acid gas sweetening unit. Aspen Hysys simulator is applied to estimate the failure probabilities needed in the resilience assessment model. The study provides a useful tool for rigorous quantitative resilience analysis of complex process systems on the level of technical-human-organizational interactions.
Keywords: Resilience assessment; Chemical process systems; Dynamic Bayesian network; FRAM (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020307328
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307328
DOI: 10.1016/j.ress.2020.107232
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().