A generalized remaining useful life prediction method for complex systems based on composite health indicator
Pengfei Wen,
Shuai Zhao,
Shaowei Chen and
Yong Li
Reliability Engineering and System Safety, 2021, vol. 205, issue C
Abstract:
As one of the key techniques in Prognostics and Health Management (PHM), accurate Remaining Useful Life (RUL) prediction can effectively reduce the number of downtime maintenance and significantly improve economic benefits. In this paper, a generalized RUL prediction method is proposed for complex systems with multiple Condition Monitoring (CM) signals. A stochastic degradation model is proposed to characterize the system degradation behavior, based on which the respective reliability characteristics such as the RUL and its Confidence Interval (CI) are explicitly derived. Considering the degradation model, two desirable properties of the Health Indicator (HI) are put forward and their respective quantitative evaluation methods are developed. With the desirable properties, a nonlinear data fusion method based on Genetic Programming (GP) is proposed to construct a superior composite HI. In this way, the multiple CM signals are fused to provide a better prediction capability. Finally, the proposed integrated methodology is validated on the C-MAPSS data set of aircraft turbine engines.
Keywords: Multiple sensors; Data fusion; Degradation modeling; Remaining useful life; Prognostics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020307419
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307419
DOI: 10.1016/j.ress.2020.107241
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().