Improving tail accuracy of the predicted cumulative distribution function of time of failure
Gina Sierra,
Elinirina I. Robinson and
Kai Goebel
Reliability Engineering and System Safety, 2021, vol. 207, issue C
Abstract:
Prognostic information is used to make decisions such as when to perform maintenance or - in time sensitive and safety critical applications - when to change operational settings. Where distributions about expected end of life (EOL) are available, these decisions are often based on risk-informed thresholds, for example a 2σ or 3σ criterion which considers the probability of making a bad decision at 5% or 0.3%, respectively, as tolerable. Sampling-based techniques such as Monte Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS) can provide effective approaches to the propagation and analysis of uncertainty. Due to its efficient manner of stratifying across the range of each sampled variable, LHS requires less computational effort than MCS and is therefore more often used. However, since the focus is placed on accurately predicting the tails of the Cumulative Distribution Function (CDF) of Time of Failure (ToF) sampling-base techniques may not properly represent these areas. Although one might be tempted to use a brute force approach and simply increase the number of samples, some safety-critical applications may be computationally constrained. Such applications include electric UAV where the decision making process has to be fast in order to take action as soon as possible. This paper explores the ability of MCS and LHS to perform tail prediction with small sample sizes. The results show that LHS does not provide a significant advantage over MCS in terms of characterizing the tails of the CDF of the battery End of Discharge (EOD) prediction. Then, a methodology that combines MCS and Kernel Density Estimation (KDE) is investigated. The advantages of KDE in terms of reducing sample size while improving tail accuracy are demonstrated on battery end-of-discharge data.
Keywords: Predicted end-of-Life distribution; Risk-based decisions; Computational constraints; Monte Carlo sampling; Latin hypercube sampling; Kernel density estimation; Time sensitive and safety critical applications (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020308255
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:207:y:2021:i:c:s0951832020308255
DOI: 10.1016/j.ress.2020.107333
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().