EconPapers    
Economics at your fingertips  
 

Airblast variability and fatality risks from a VBIED in a complex urban environment

Nicholas A Marks, Mark G. Stewart, Michael D. Netherton and Chris G. Stirling

Reliability Engineering and System Safety, 2021, vol. 209, issue C

Abstract: Explosive blasts and prediction of fatality risks in urban environments is a complicated task due to the variability in blast wave reflection and propagation. The terrorist threats considered in this paper are vehicle-borne improvised explosive devices (VBIED) containing 225 kg or 450 kg of TNT or ammonium nitrate fuel oil (ANFO) detonated in an open street. This paper uses Viper::Blast CFD software to estimate the variability of explosive blast loads using Monte-Carlo sampling. To probabilistically model the blast wave, the paper takes into consideration the variability of explosive charge mass, detonation location, height of detonation, net equivalent quantity, atmospheric pressure and temperature, and model errors. The fatality risk assessment combines lung-rupture, whole-body displacement and skull fracture dependant on the pressure and impulse. It was found that the mean fatality risk for a 450 kg home-made ANFO explosive device detonated at a road T-intersection is 16% for people exposed in the street. If bollards were placed 10 m from the main street then fatality risk for people in the main street is reduced by over 90%. It was found that a deterministic analysis yielded fatality risks 10–60% higher than a probabilistic analysis, leading to an overly conservative assessment of safety risks.

Keywords: Airblast; Uncertainty; Fatality; Risk; Terrorism; Probabilistic modelling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021000272
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000272

DOI: 10.1016/j.ress.2021.107459

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000272