EconPapers    
Economics at your fingertips  
 

Efficient reliability-based design optimization of composite structures via isogeometric analysis

Peng Hao, Hao Yang, Yutian Wang, Xuanxiu Liu, Bo Wang and Gang Li

Reliability Engineering and System Safety, 2021, vol. 209, issue C

Abstract: Composite variable-stiffness (VS) panels with curvilinear fiber paths are very promising for aerospace structures. Due to the inherent complexity of VS laminates, buckling analysis and design optimization are extremely time-consuming and challenging, especially when uncertainties are considered, i.e. reliability-based design optimization (RBDO). In this study, an efficient bi-stage RBDO framework via isogeometric analysis (IGA) is established to release the tremendous computational burden. In Stage I, the layer thickness and lamination parameters are used as design variables to obtain an approximated layer number, which greatly reduces the design variable size. In Stage II, intermediate density variables are introduced, and IGA is employed for the buckling analysis and derivation of the analytical sensitivity. Furthermore, the augmented step size adjustment (ASSA) algorithm is used to enhance the efficiency and robustness of the RBDO process. Numerical results of VS panels are used to validate the performance of the proposed RBDO framework. The optimal results indicate that the proposed framework can find the optimal lightweight design that satisfies the manufacturing constraints in an efficient and accurate manner.

Keywords: Composite structures; Reliability-based design optimization; Buckling; Fiber path; Isogeometric analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021000338
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000338

DOI: 10.1016/j.ress.2021.107465

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000338