The Impact of Autonomous Ships on Safety at Sea – A Statistical Analysis
Jiri de Vos,
Robert G. Hekkenberg and
Osiris A. Valdez Banda
Reliability Engineering and System Safety, 2021, vol. 210, issue C
Abstract:
The advent of autonomous ships that are unmanned or low-manned will reduce the number of people at risk at sea. Even when autonomous navigation does not reduce the number of accidents, this means that safety at sea will increase. In fact, increased safety is one of the primary perceived drivers for autonomous shipping, although this safety increase has not yet been quantified in academic literature. In this article a statistical analysis is performed to determine the distribution of human casualties and lost ships over accident types, ship types and ship sizes. Subsequently, based on several scenarios for the implementation of autonomous ships, a quantification of the estimated reduction in loss of life and loss of ships is provided. It is concluded that the implementation of autonomy on small cargo ships with a length below 120 m will have the largest safety benefit, since these ships account for the majority recorded ship losses and lives lost.
Keywords: Autonomous ships; Statistical analysis; Safety at Sea; Loss of Life (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021001113
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:210:y:2021:i:c:s0951832021001113
DOI: 10.1016/j.ress.2021.107558
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().