Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming
Nima Khakzad
Reliability Engineering and System Safety, 2021, vol. 212, issue C
Abstract:
Fire is one of the most costly accidents in process plants due to the inflicted damage and the required firefighting resources. If the firefighting resources are sufficient, firefighting will include the suppression and cooling of all the burning units and exposed units, respectively. However, when the resources are inadequate, optimal firefighting strategies to answer “which burning units to suppress first and which exposed units to cool first?†would be essential to delay the fire spread until more resources become available.
Keywords: Domino effect; Firefighting; Optimization; Dynamic Bayesian network; Mathematical programming; Decision support systems (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021001289
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001289
DOI: 10.1016/j.ress.2021.107577
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().