EconPapers    
Economics at your fingertips  
 

Gaussian processes for shock test emulation

Christophe Bonneville, Maxwell Jenquin, Juan Londono, Alex Kelly, Jeffrey Cipolla and Christopher Earls

Reliability Engineering and System Safety, 2021, vol. 212, issue C

Abstract: Certifying performance of mechanical components with experimental tests is time consuming and expensive, which motivates the development of efficient approaches for predicting the outcomes from such testing. We propose two methods based on Gaussian processes (GP) to estimate the probability that new components will pass future certification tests, while assessing our prediction confidence. The first method processes a set of Bernoulli trials into a suitable machine learning dataset and subsequently infers the probability of performing satisfactorily for new components using heteroscedastic bounded GP regression. The second method uses GP classification with linear kernels. We demonstrate that linear kernels are well suited for datasets representing snapshots of mechanical system responses by accurately reproducing the underlying physical trends in the data. This yields consistent probabilities of passing and provides high labeling accuracy, even with small datasets. We demonstrate these techniques on synthetic datasets consistent with ship cabinet certification tests. We achieve up to 100% accuracy using all of the training data, and at least 92% with only 10% of the available data. With a corrupted training set, we obtain at least 93% accuracy. In the regression framework, we demonstrate that introducing heteroscedasticity helps achieve significantly better accuracy than frequentist machine learning methods.

Keywords: Gaussian process; Machine learning; Uncertainty quantification; Structural dynamics; Bernoulli trials; Virtual shock testing (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021001666
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001666

DOI: 10.1016/j.ress.2021.107624

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001666