Resilience-based Recovery Scheduling of Transportation Network in Mixed Traffic Environment: A Deep-Ensemble-Assisted Active Learning Approach
Qiling Zou and
Suren Chen
Reliability Engineering and System Safety, 2021, vol. 215, issue C
Abstract:
Devising effective post-hazard recovery strategies is critical in enhancing the resilience of transportation networks (TNs). However, existing work does not consider the multiclass users’ travel behavior in network functionality quantification and the metaheuristic solution procedures often suffer from extensive computational burden due to the exploration need in large solution space and the expensive functionality quantification. This study develops a bilevel decision-making framework for the resilience-based recovery scheduling of the TN in a mixed traffic environment with connected and autonomous vehicles (CAVs) and human-driven vehicles (HDVs). The lower level quantifies the TN's functionality over time considering different travel behavior of CAV and HDV users arisen from their different levels of information perception. The upper level presents a novel deep-ensemble-assisted active learning approach to balance optimization performance and computational cost. This framework can help decision makers better quantify the TN's functionality to support effective recovery scheduling of TN with different mixed traffic scenarios ranging from HDV-only to future CAV-dominant traffic. The optimization approach bears the potential to be extended to solving general large-scale network recovery scheduling problems effectively and efficiently. The proposed methodology is demonstrated using a real-world traffic network in Southern California under earthquake considering deterministic and stochastic repair durations.
Keywords: Resilience; Transportation network; Connected-autonomous vehicle; Active learning; Network recovery scheduling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021003239
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003239
DOI: 10.1016/j.ress.2021.107800
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().